PROTACs in Colorectal Cancer: A New Era in Targeted Protein Degradation Therapy
Keywords:
PROTAC, Colorectal cancer, Protein degradation, Ubiquitin-proteasome system, Drug resistanceAbstract
Colorectal cancer (CRC) is a leading cause of cancer-related mortality worldwide, with treatment challenges arising from late-stage diagnosis, therapy resistance, and the presence of undruggable targets. The advent of proteolysis-targeting chimeras (PROTACs) offers a novel therapeutic avenue by leveraging the ubiquitin-proteasome system (UPS) for targeted protein degradation. Unlike conventional inhibitors that act like temporary “off switches” for cancer-related proteins, PROTACs function as “disposal tags,” marking harmful proteins for complete removal by the cell, enabling sustained oncogenic protein degradation. PROTACs address key drivers of CRC progression, including Kirsten rat sarcoma viral oncogene homolog (KRAS) , the Wnt/β-catenin pathway, bromodomain-containing protein 4 (BRD4), cyclin-dependent kinase 4/6 (CDK4/6), signal transducer and activator of transcription 3 (STAT3), and DNA repair regulators. This review explores the mechanistic foundation of PROTACs, their application in CRC therapy, and the ongoing advancements in optimizing their selectivity, bioavailability, and clinical translation. While challenges such as E3 ligase selection, intracellular delivery, and resistance mechanisms remain, recent innovations in linker chemistry, nanocarrier systems, and artificial intelligence (AI)-driven drug design are enhancing the clinical feasibility of PROTAC therapeutics. As research progresses, PROTAC-based therapies hold significant promise for overcoming current treatment limitations, paving the way for a new era of precision medicine in CRC management.
References
[1]Olfatifar M, Rafiei F, Sadeghi A, Ataei E, Habibi MA, et al. Assessing the colorectal cancer landscape: A comprehensive exploration of future trends in 216 countries and territories from 2021 to 2040. Journal of Epidemiology and Global Health, 2025, 15(1): 5. DOI: 10.1007/s44197-025-00348-3
[2]Morgan E, Arnold M, Gini A, Lorenzoni V, Cabasag CJ, et al. Global burden of colorectal cancer in 2020 and 2040: incidence and mortality estimates from GLOBOCAN. Gut, 2023, 72(2): 338-344. DOI: 10.1136/gutjnl-2022-327736
[3]Sung H, Siegel RL, Laversanne M, Jiang C, Morgan E, et al. Colorectal cancer incidence trends in younger versus older adults: an analysis of population-based cancer registry data. Lancet Oncology, 2025, 26(1): 51-63. DOI: 10.1016/S1470-2045(24)00600-4
[4]Lopez BAA, Pinto-Colmenarez R, Caliwag FMC, Ponce-Lujan L, Fermin MD, et al. Colorectal cancer screening and management in low-and middle-income countries and high-income countries: a narrative review. Cureus, 2024, 16(10): e70933. DOI: 10.7759/cureus.70933
[5]Jacobson CE, Harbaugh CM, Agbedinu K, Kwakye G. Colorectal cancer outcomes: a comparative review of resource-limited settings in low- and middle-income countries and rural america. Cancers (Basel), 2024, 16(19): 3302. DOI: 10.3390/cancers16193302
[6]Martinez ME, Schmeler KM, Lajous M, Newman LA. Cancer Screening in low- and middle-income countries. American Society of Clinical Oncology Educational Book, 2024, 44(3): e431272. DOI: 10.1200/EDBK_431272
[7]Anthony A, Christian C. A comprehensive literature review of red flag signs and symptoms for patients with early-onset colorectal cancer. The International Journal of Medical Science and Health Research, 2024, 5(5): 46-61.
[8]Tonini V, Zanni M. Why is early detection of colon cancer still not possible in 2023? World Journal of Gastroenterology, 2024, 30(3): 211. DOI: 10.3748/wjg.v30.i3.211
[9]Abedizadeh R, Majidi F, Khorasani HR, Abedi H, Sabour D. Colorectal cancer: a comprehensive review of carcinogenesis, diagnosis, and novel strategies for classified treatments. Cancer and Metastasis Reviews, 2024, 43(2): 729-753. DOI: 10.1007/s10555-023-10158-3
[10]Drami I, Pring E, Gould L, Malietzis G, Naghibi M, et al. Body composition and dose-limiting toxicity in colorectal cancer chemotherapy treatment; a systematic review of the literature. Could muscle mass be the new body surface area in chemotherapy dosing? Clinical Oncology, 2021, 33(12): e540-e552. DOI: 10.1016/j.clon.2021.05.011
[11]Shuford RA, Cairns AL, Moaven O. Precision approaches in the management of colorectal cancer: current evidence and latest advancements towards individualizing the treatment. Cancers (Basel), 2020, 12(11): 3481. DOI: 10.3390/cancers12113481
[12]Maitra S, Mukerjee N, Mukherjee D, Ghosh A, Alexiou AT. PROteolysis targeting chimeras: a new cutting‐edge nanomedicine for colorectal cancer. Clinical and Translational Discovery, 2024, 4(4): e337. DOI: 10.1002/ctd2.337
[13]Gough JD, Crews CM. Probing protein function with small molecules. Ernst Schering Research Foundation workshop, 2006, (58): 61-74. DOI: 10.1007/978-3-540-37635-4_5
[14]Ostrowska H. The ubiquitin-proteasome system: a novel target for anticancer and anti-inflammatory drug research. Cellular & Molecular Biology Letters, 2008, 13(3): 353-365. DOI: 10.2478/s11658-008-0008-7
[15]Craik DJ, Fairlie DP, Liras S, Price D. The future of peptide-based drugs. Chemical Biology & Drug Design, 2013, 81(1): 136-147. DOI: 10.1111/cbdd.12055
[16]Micale N, Scarbaci K, Troiano V, Ettari R, Grasso S, et al. Peptide-based proteasome inhibitors in anticancer drug design. Medicinal Research Reviews, 2014, 34(5): 1001-1069. DOI: 10.1002/med.21312
[17]Toure M, Crews CM. Small-molecule PROTACS: new approaches to protein degradation. Angewandte Chemie International Edition in English, 2016, 55(6): 1966-1973. DOI: 10.1002/anie.201507978
[18]Buckley DL, Crews CM. Small‐molecule control of intracellular protein levels through modulation of the ubiquitin proteasome system. Angewandte Chemie International Edition, 2014, 53(9): 2312-2330. DOI: 10.1002/anie.201307761
[19]Lohbeck J, Miller AK. Practical synthesis of a phthalimide-based cereblon ligand to enable PROTAC development. Bioorganic & Medicinal Chemistry Letters, 2016, 26(21): 5260-5262. DOI: 10.1016/j.bmcl.2016.09.048
[20]Ito T, Handa H. Cereblon and its downstream substrates as molecular targets of immunomodulatory drugs. International Journal of Hematology, 2016, 104: 293-299. DOI: 10.1007/s12185-016-2073-4
[21]Lu J, Qian Y, Altieri M, Dong H, Wang J, et al. Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chemistry & Biology, 2015, 22(6): 755-763. DOI: 10.1016/j.chembiol.2015.05.009
[22]Negi A, Kesari KK, Voisin-Chiret AS. Light-activating PROTACs in cancer: chemical design, challenges, and applications. Applied Sciences, 2022, 12(19): 9674. DOI: 10.3390/app12199674
[23]Liu J, Chen H, Ma L, He Z, Wang D, et al. Light-induced control of protein destruction by opto-PROTAC.Science Advances, 2020, 6(8): eaay5154. DOI: 10.1126/sciadv.aay5154
[24]Hines J, Gough JD, Corson TW, Crews CM. Posttranslational protein knockdown coupled to receptor tyrosine kinase activation with phosphoPROTACs. Proceedings of the National Academy of Sciences, 2013, 110(22): 8942-8947. DOI: 10.1073/pnas.1217206110
[25]Shi Y, Liu M, Li M, Mao Y, Ma J, et al. Discovery of potent PROTAC degraders of Pin1 for the treatment of acute myeloid leukemia. Chemical Science, 2024, 15(13): 5027-5035. DOI: 10.1039/d3sc06558h
[26]Zhang Y, Fong KW, Mao F, Wang R, Allison DB, et al. Elevating PLK1 overcomes BETi resistance in prostate cancer via triggering BRD4 phosphorylation-dependent degradation in mitosis. Cell Reports, 2024, 43(7): 114431. DOI: 10.1016/j.celrep.2024.114431
[27]Juan A, Del Mar Noblejas-Lopez M, Arenas-Moreira M, Alonso-Moreno C, Ocana A. Options to improve the action of PROTACs in cancer: development of controlled delivery nanoparticles. Frontiers in Cell and Developmental Biology, 2021, 9: 805336. DOI: 10.3389/fcell.2021.805336
[28]Qin AC, Jin H, Song Y, Gao Y, Chen YF, et al. The therapeutic effect of the BRD4-degrading PROTAC A1874 in human colon cancer cells. Cell Death & Disease, 2020, 11(9): 805. DOI: 10.1038/s41419-020-03015-6
[29]Otto C, Schmidt S, Kastner C, Denk S, Kettler J, et al. Targeting bromodomain-containing protein 4 (BRD4) inhibits MYC expression in colorectal cancer cells. Neoplasia, 2019, 21(11): 1110-1120. DOI: 10.1016/j.neo.2019.10.003
[30]Zhou Z, Zhou G, Zhou C, Fan Z, Cui R, et al. Discovery of a potent, cooperative, and selective SOS1 PROTAC ZZ151 with in vivo antitumor efficacy in KRAS-mutant cancers. Journal of Medicinal Chemistry, 2023, 66(6): 4197-4214. DOI: 10.1021/acs.jmedchem.3c00075
[31]Zhao L, Zhao J, Zhong KH, Tong AP, Jia D. Targeted protein degradation: mechanisms, strategies and application. Signal Transduction and Targeted Therapy, 2022, 7(1), 113. DOI: 10.1038/s41392-022-00966-4
[32]Neklesa TK, Winkler JD, Crews CM. Targeted protein degradation by PROTACs. Pharmacology & Therapeutics, 2017, 174, 138-144. DOI: 10.1016/j.pharmthera.2017.02.027
[33]Hu ZY, Crews CM. Recent developments in PROTAC-mediated protein degradation: from bench to clinic. ChemBioChem, 2022, 23(2), e202100270. DOI: 10.1002/cbic.202100270
[34]Petrylak DP. Potential of targeted protein degradation: early results for arv-110. Oncology Times, 2020, 42(21), 27-28. DOI: 10.1097/01.COT.0000722628.60363.59
[35]Hamilton EP, Schott AF, Nanda R, Lu HL, Keung CF, et al. ARV-471, an estrogen receptor (ER) PROTAC degrader, combined with palbociclib in advanced ER+/human epidermal growth factor receptor 2-negative (HER2-) breast cancer: Phase 1b cohort (part C) of a phase 1/2 study. Journal of Clinical Oncology, 2022, 40(16). DOI: 10.1200/JCO.2022.40.16_suppl.TPS1120
[36]Shore N, Lang JM, Geynisman DM, Stewart TF, Gao X, et al. MP14-19 - ARV-766, a PROTAC androgen receptor (AR) degrader, combined with abiraterone in novel hormonal agent (NHA)-naïve metastatic prostate cancer: phase 1 cohort (part C) of a phase 1/2 study. The Journal of Urology, 2024, 211(5S), e227. DOI: 10.1097/01.JU.0001009428.69695.82.19
[37]Rathkopf DE, Patel MR, Choudhury AD, Rasco D, Lakhani N, et al. Safety and clinical activity of BMS-986365 (CC-94676), a dual androgen receptor ligand-directed degrader and antagonist, in heavily pretreated patients with metastatic castration-resistant prostate cancer. Annals of Oncology, 2025, 36(1), 76-88. DOI: 10.1016/j.annonc.2024.09.005
[38]Campone M, Ma CX, De Laurentiis M, Iwata H, Hurvitz SA, et al. VERITAC-2: A global, randomized phase 3 study of ARV-471, a proteolysis targeting chimera (PROTAC) estrogen receptor (ER) degrader, vs fulvestrant in ER+/human epidermal growth factor receptor 2 (HER2)-advanced breast cancer. Journal of Clinical Oncology, 2023, 41(16). DOI: 10.1200/JCO.2023.41.16_suppl.TPS1122
[39]Petrylak DP, McKean M, Lang JM, Gao X, Dreicer R, et al. ARV-766, a proteolysis targeting chimera (PROTAC) androgen receptor (AR) degrader, in metastatic castration-resistant prostate cancer (mCRPC), Initial results of a phase 1/2 study. Journal of Clinical Oncology, 2024, 42(16). DOI: 10.1200/JCO.2024.42.16_suppl.5011
[40]Jaiswal A, Jaiswal A, Williamson EA, Gelfond J, Zheng GR, et al. Resistance to the BCL-XL degrader DT2216 in T-cell acute lymphoblastic leukemia is rare and correlates with decreased BCL-XL proteolysis. Cancer Chemotherapy and Pharmacology, 2023, 91(1), 89-95. DOI: 10.1007/s00280-022-04490-8
[41]Livingston JA, Blay JY, Trent J, Valverde C, Agulnik M, et al. A phase I study of FHD-609, a heterobifunctional degrader of bromodomain-containing protein 9, in patients with advanced synovial sarcoma or SMARCB1-deficient tumors. Clinical Cancer Research, 2025, 31(4), 628-638. DOI: 10.1158/1078-0432.CCR-24-2583
[42]Ackerman L, Acloque G, Bacchelli S, Schwartz H, Feinstein BJ, et al. IRAK4 degrader in hidradenitis suppurativa and atopic dermatitis: a phase 1 trial. Nature Medicine, 2023, 29(12), 3127-3136. DOI: 10.1038/s41591-023-02635-7
[43]Stevens DA, Ewesuedo R, McDonald A, Agarwal S, Henrick P, et al. Phase 1 study of KT-413, a targeted protein degrader, in adult patients with relapsed or refractory B-cell non-Hodgkin lymphoma. Journal of Clinical Oncology, 2022, 40(16). DOI: 10.1200/JCO.2022.40.16_suppl.TPS3170
[44]Danilov A, Tees MT, Patel K, Wierda WG, Patel M, et al. A first-in-human phase 1 trial of NX-2127, a first-in-class Bruton's tyrosine kinase (BTK) dual-targeted protein degrader with immunomodulatory activity, in patients with relapsed/refractory B cell malignancies. Blood, 2023, 142, 4463. DOI: 10.1182/blood-2023-179872
[45]Linton K, Doorduijn J, El-Sharkawi D, Mous R, Forconi F, et al. PB2331: An ongoing first-in-human Phase 1 Trial of NX-5948, an oral Bruton’s tyrosine kinase (BTK) degrader, in patients with relapsed/refractory B cell malignancies. Hemasphere, 2023, 7(S3), e29005fd. DOI: 10.1097/01.HS9.0000976044.29005.fd
[46]Dhakal B, Yee AJ, Richardson PG, Ailawadhi S, Chhabra S, et al. Initial Results of a Phase 1 First-in-human study of cemsidomide (CFT7455), a novel MonoDACTM degrader, with dexamethasone in patients with relapsed/refractory multiple myeloma. Blood, 2024, 144, 3366. DOI: 10.1182/blood-2024-204255
[47]Shastri A, Feldman EJ, Starodub AN, Feldman T, Rodriguez CP, et al. Preliminary Safety, Pharmacokinetics, pharmacodynamics and clinical activity of KT-333, a targeted protein degrader of STAT3, in patients with relapsed or refractory lymphomas, large granular lymphocytic leukemia, and solid tumors. Blood, 2023, 142, 3081. DOI: 10.1182/blood-2023-181130
[48]Nakajima EC, Drezner N, Li XX, Mishra-Kalyani PS, Liu YJ, et al. FDA approval summary: sotorasib for KRAS G12C-mutated metastatic NSCLC. Clinical Cancer Research, 2022, 28(8), 1482-1486. DOI: 10.1158/1078-0432.CCR-21-3074
[49]Ou SI, Janne PA, Leal TA, Rybkin, II, Sabari JK, et al. First-in-human phase I/IB dose-finding study of Adagrasib (MRTX849) in patients with advanced KRAS(G12C) solid tumors (KRYSTAL-1). Journal of Clinical Oncology, 2022, 40(23), 2530-2538. DOI: 10.1200/JCO.21.02752
[50]Yaeger R, Weiss J, Pelster MS, Spira AI, Barve M, et al. Adagrasib with or without cetuximab in colorectal cancer with mutated KRAS G12C. The New England Journal of Medicine, 2023, 388(1), 44-54. DOI: 10.1056/NEJMoa2212419
[51]Yang F, Wen YL, Wang CF, Zhou Y, Zhou Y, et al. Efficient targeted oncogenic KRAS(G12C) degradation via first reversible-covalent PROTAC. European Journal of Medicinal Chemistry, 2022, 230, 114088. DOI: 10.1016/j.ejmech.2021.114088
[52]Khan S, Wiegand J, Zhang PY, Hu WY, Thummuri D, et al. BCL-XL PROTAC degrader DT2216 synergizes with sotorasib in preclinical models of KRASG12C-mutated cancers. Journal of Hematology & Oncology, 2022, 15(1), 23. DOI: 10.1186/s13045-022-01241-3
[53]Bond MJ, Chu L, Nalawansha DA, Li K, Crews CM. Targeted Degradation of oncogenic KRAS(G12C) by VHL-recruiting PROTACs. ACS Central Science, 2020, 6(8), 1367-1375. DOI: 10.1021/acscentsci.0c00411
[54]Cheng JF, Li Y, Wang X, Dong GQ, Sheng CQ. Discovery of novel PDEdelta degraders for the treatment of KRAS mutant colorectal cancer. Journal of Medicinal Chemistry, 2020, 63(14), 7892-7905. DOI: 10.1021/acs.jmedchem.0c00929
[55]Begovich K, Schoolmeesters A, Rajapakse N, Martinez-Terroba E, Kumar M, et al. Cereblon-based bifunctional degrader of SOS1, BTX-6654, targets multiple KRAS mutations and inhibits tumor growth. Molecular Cancer Therapeutics, 2024, 23(4), 407-420. DOI: 10.1158/1535-7163.MCT-23-0513
[56]Begovich K, Schoolmeesters A, Martinez-Terroba E, Rajapakse N, Liu Q, et al. Characterization of BTX-10908, a first-in-class, orally bioavailable SOS1 bifunctional degrader for the treatment of KRAS-and RTK-driven cancers. Journal of Clinical Oncology, 2024, 42(16). DOI: 10.1200/JCO.2024.42.16_suppl.e15192
[57]Nussinov R, Jang H. Direct K-Ras inhibitors to treat cancers: progress, new insights, and approaches to treat resistance. Annual Review of Pharmacology and Toxicology, 2024, 64(1), 231-253. DOI: 10.1146/annurev-pharmtox-022823-113946
[58]Christensen JG, Olson P, Briere T, Wiel C, Bergo MO. Targeting Krasg12c‐mutant cancer with a mutation‐specific inhibitor. Journal of Internal Medicine, 2020, 288(2), 183-191. DOI: 10.1111/joim.13057
[59]Sun LB, Xing JP, Zhou XP, Song XY, Gao SH. Wnt/beta-catenin signalling, epithelial-mesenchymal transition and crosslink signalling in colorectal cancer cells. Biomedicine & Pharmacotherapy, 2024, 175, 116685. DOI: 10.1016/j.biopha.2024.116685
[60]Liao HW, Li X, Zhao LZ, Wang YL, Wang XD, et al. A PROTAC peptide induces durable beta-catenin degradation and suppresses Wnt-dependent intestinal cancer. Cell Discovery, 2020, 6(1), 35. DOI: 10.1038/s41421-020-0171-1
[61]Wang Z, Li ZL, Ji HT. Direct targeting of beta-catenin in the Wnt signaling pathway: Current progress and perspectives. Medicinal Research Reviews, 2021, 41(4), 2109-2129. DOI: 10.1002/med.21787
[62]Zaman SU, Pagare PP, Ma H, Hoyle RG, Zhang Y, et al. Novel PROTAC probes targeting KDM3 degradation to eliminate colorectal cancer stem cells through inhibition of Wnt/β-catenin signaling. RSC Medicinal Chemistry, 2024, 15(11), 3746-3758. DOI: 10.1039/d4md00122b
[63]Zhang P, Li RD, Xiao H, Liu WZ, Zeng XY, et al. BRD4 Inhibitor AZD5153 suppresses the proliferation of colorectal cancer cells and sensitizes the anticancer effect of PARP inhibitor. International Journal of Biological Sciences, 2019, 15(9), 1942-1954. DOI: 10.7150/ijbs.34162
[64]He YH, Ju Y, Hu YZ, Wang BL, Che SY, et al. Brd4 proteolysis-targeting chimera nanoparticles sensitized colorectal cancer chemotherapy. Journal of Controlled Release : Official Journal of the Controlled Release Society, 2023, 354, 155-166. DOI: 10.1016/j.jconrel.2022.12.035
[65]King HM, Rana S, Kubica SP, Mallareddy JR, Kizhake S, et al. Aminopyrazole based CDK9 PROTAC sensitizes pancreatic cancer cells to venetoclax. Bioorganic & Medicinal Chemistry Letters, 2021, 43, 128061. DOI: 10.1016/j.bmcl.2021.128061
[66]Yang LQ, Yang Y, Zhang J, Li MH, Yang L, et al. Sequential responsive nano-PROTACs for precise intracellular delivery and enhanced degradation efficacy in colorectal cancer therapy. Signal Transduction and Targeted Therapy, 2024, 9(1), 275. DOI: 10.1038/s41392-024-01983-1
[67]Jin JM, Wu YP, Zhao Z, Wu Y, Zhou YD, et al. Small-molecule PROTAC mediates targeted protein degradation to treat STAT3-dependent epithelial cancer. JCI Insight, 2022, 7(22), e160606. DOI: 10.1172/jci.insight.160606
[68]Guo CL, Wang LJ, Li XX, Wang SY, Yu XM, et al. Discovery of novel bromophenol–thiosemicarbazone hybrids as potent selective inhibitors of poly (ADP-ribose) polymerase-1 (PARP-1) for use in cancer. Journal of Medicinal Chemistry, 2019, 62(6), 3051-3067. DOI: 10.1021/acs.jmedchem.8b01946
[69]O'Connor MJ. Targeting the DNA damage response in cancer. Molecular Cell, 2015, 60(4), 547-560. DOI: 10.1016/j.molcel.2015.10.040
[70]Demeny MA, Virag L. The PARP enzyme family and the hallmarks of cancer part 2: hallmarks related to cancer host interactions. Cancers (Basel), 2021, 13(9), 2057. DOI: 10.3390/cancers13092057
[71]Wang YB, Zhou YY, Cao S, Sun Y, Dong ZQ, et al. In vitro and in vivo degradation of programmed cell death ligand 1 (PD-L1) by a proteolysis targeting chimera (PROTAC). Bioorganic Chemistry, 2021, 111, 104833. DOI: 10.1016/j.bioorg.2021.104833
[72]Hoshi R, Gorospe KA, Labouta HI, Azad T, Lee WL, et al. Alternative strategies for delivering immunotherapeutics targeting the PD-1/PD-L1 immune checkpoint in cancer. Pharmaceutics, 2024, 16(9), 1181. DOI: 10.3390/pharmaceutics16091181
[73]Wang Z, Yuan L, Liao X, Guo X, Chen J. Reducing PD-L1 expression by degraders and downregulators as a novel strategy to target the PD-1/PD-L1 pathway. Journal of Medicinal Chemistry, 2024, 67(8), 6027-6043. DOI: 10.1021/acs.jmedchem.3c02143
[74]Peng Q, Qiu XY, Zhang ZH, Zhang SL, Zhang YY, et al. PD-L1 on dendritic cells attenuates T cell activation and regulates response to immune checkpoint blockade. Nature Communications, 2020, 11(1), 4835. DOI: 10.1038/s41467-020-18570-x
[75]Jin CH, Zhu XD, Huang XN, Gong TJ, Wei ZP, et al. Efficacy and safety of PD-1/PD-L1 and CTLA-4 immune checkpoint inhibitors in colorectal cancer: A meta-analysis. Journal of Comparative Effectiveness Research, 2021, 11(3), 203-212. DOI: 10.2217/cer-2021-0134
[76]Gu LH, Khadaroo PA, Su H, Kong LY, Chen LL, et al. The safety and tolerability of combined immune checkpoint inhibitors (anti-PD-1/PD-L1 plus anti-CTLA-4): a systematic review and meta-analysis. BMC Cancer, 2019, 19(1), 559. DOI: 10.1186/s12885-019-5785-z
[77]Yang CR, Yang YC, Li YJ, Ni QK, Li JH. Radiotherapy-triggered proteolysis targeting chimera prodrug activation in tumors. Journal of the American Chemical Society, 2023, 145(1), 385-391. DOI: 10.1021/jacs.2c10177
[78]Wang TY, Zhang YM, Chen K, Huang Y, Liu YW, et al. CDK4/6 nano-PROTAC enhances mitochondria-dependent photodynamic therapy and anti-tumor immunity. Nano Today, 2023, 50, 101890. DOI: 10.1016/j.nantod.2023.101890
[79]Papatzimas JW, Gorobets E, Maity R, Muniyat MI, MacCallum JL, et al. From inhibition to degradation: targeting the antiapoptotic protein myeloid cell leukemia 1 (MCL1). Journal of Medicinal Chemistry, 2019, 62(11), 5522-5540. DOI: 10.1021/acs.jmedchem.9b00455
[80]Hou B, Chen T, Zhang H, Li JT, Wang P, et al. The E3 ubiquitin ligases regulate PD-1/PD-L1 protein levels in tumor microenvironment to improve immunotherapy. Frontiers in Immunology, 2023, 14, 1123244. DOI: 10.3389/fimmu.2023.1123244
[81]Zhang C, He SS, Zeng ZL, Cheng PH, Pu KY. Smart nano-PROTACs reprogram tumor microenvironment for activatable photo-metabolic cancer immunotherapy. Angewandte Chemie, 2022, 61(8), e202114957. DOI: 10.1002/anie.202114957
[82]Wang C, Zhang YJ, Chen WJ, Wu YD, Xing DM. New-generation advanced PROTACs as potential therapeutic agents in cancer therapy. Molecular Cancer, 2024, 23(1), 110. DOI: 10.1186/s12943-024-02024-9
[83]Hong KB, An HC. Degrader-antibody conjugates: emerging new modality. Journal of Medicinal Chemistry, 2022, 66(1), 140-148. DOI: 10.1021/acs.jmedchem.2c01791
[84]Diehl CJ, Ciulli A. Discovery of small molecule ligands for the von Hippel-Lindau (VHL) E3 ligase and their use as inhibitors and PROTAC degraders. Chemical Society Reviews, 2022, 51(19), 8216-8257. DOI: 10.1039/d2cs00387b
[85]Han X, Wei WY, Sun Y. PROTAC degraders with ligands recruiting MDM2 E3 ubiquitin ligase: an updated perspective. Acta Materia Medica, 2022, 1(2), 244-259. DOI: 10.15212/amm-2022-0010
[86]Campos MA, Riha IA, Zhang CL, Mozes C, Scheidt KA, et al. Discovery of DCAF16 binders for targeted protein degradation. ACS Chemical Biology, 2025, 20(2), 479-488. DOI: 10.1021/acschembio.4c00799
[87]Yanan G, Saiqi W, Xiao-Bing C, Bin Y. Utilizing natural products as new E3 ligase ligands for targeted protein degradation. Chinese Journal of Natural Medicines, 2023, 21(12), 881-883. DOI: 10.1016/S1875-5364(23)60500-X
[88]Wei JL, Meng FY, Park KS, Yim H, Velez J, et al. Harnessing the E3 Ligase KEAP1 for targeted protein degradation. Journal of the American Chemical Society, 2021, 143(37), 15073-15083. DOI: 10.1021/jacs.1c04841
[89]Alaseem AM. Advancements in MDM2 inhibition: Clinical and pre-clinical investigations of combination therapeutic regimens. Saudi Pharmaceutical Journal, 2023, 31(10), 101790. DOI: 10.1016/j.jsps.2023.101790
[90]Adams CM, Mitra R, Xiao YC, Michener P, Palazzo J, et al. Targeted MDM2 degradation reveals a new vulnerability for p53-inactivated triple-negative breast cancer. Cancer Discovery, 2023, 13(5), 1210-1229. DOI: 10.1158/2159-8290.CD-22-1131
[91]Jiang XX, Lu Y, Xie SJ, Chen YJ, Liu XL, et al. miR-624 accelerates the growth of liver cancer cells by inhibiting EMC3. Non-coding RNA Research, 2023, 8(4), 641-644. DOI: 10.1016/j.ncrna.2023.09.005
[92]Schröder M, Renatus M, Liang X, Meili F, Zoller T, et al. DCAF1-based PROTACs with activity against clinically validated targets overcoming intrinsic-and acquired-degrader resistance. Nature Communications, 2024, 15(1), 275. DOI: 10.1038/s41467-023-44237-4
[93]Han X, Sun Y. PROTACs: A novel strategy for cancer drug discovery and development. MedComm (2020), 2023, 4(3), e290. DOI: 10.1002/mco2.290
[94]Chen Y, Tandon I, Heelan W, Wang YX, Tang WP, et al. Proteolysis-targeting chimera (PROTAC) delivery system: advancing protein degraders towards clinical translation. Chemical Society Reviews, 2022, 51(13), 5330-5350. DOI: 10.1039/d1cs00762a
[95]Patel MP, Kalyani HK, Patel KM, Patel BR, Patel DH, et al. Delivery Systems: Miniaturised PROTAC, nano PROTAC, and aptamer-based RNA PROTAC. PROTAC-Mediated Protein Degradation: A Paradigm Shift in Cancer Therapeutics, 2024, 367-385. DOI: 10.1007/978-981-97-5077-1_17
[96]Gao WH, Xia XL, Yang XY, Li QR, Xia XX, et al. Amphiphilic affibody-PROTAC conjugate self-assembled nanoagents for targeted cancer therapy. Chemical Engineering Journal, 2024, 495, 153437. DOI: 10.1016/j.cej.2024.153437
[97]Fang L, Zhu RX, Li MJ, Ma JH, Fan SJ, et al. Silica-dased Egfr-degrading nano-Protacs for efficient therapy of non-small cell lung cancer. European Journal of Pharmaceutics and Biopharmaceutics, 2025, 114699. DOI: 10.1016/j.ejpb.2025.114699
[98]Peng XP, Hu ZH, Zeng LM, Zhang MZ, Xu CC, et al. Overview of epigenetic degraders based on PROTAC, molecular glue, and hydrophobic tagging technologies. Acta Pharmaceutica Sinica. B, 2024, 14(2), 533-578. DOI: 10.1016/j.apsb.2023.09.003
[99]Chang MY, Gao F, Pontigon D, Gnawali G, Xu H, et al. Bioorthogonal PROTAC prodrugs enabled by on-target activation. Journal of the American Chemical Society, 2023, 145(25), 14155-14163. DOI: 10.1021/jacs.3c05159
[100]Jia XJ, Han X. Targeting androgen receptor degradation with PROTACs from bench to bedside. Biomedicine & Pharmacotherapy, 2023, 158, 114112. DOI: 10.1016/j.biopha.2022.114112
[101]Bond MJ. Towards tumor cell specific proteolysis targeting chimeras: identification of oncogenic KRASG12C, DcpS, and MAGE-A3 degraders. Yale University, 2022, 455.
[102]Shi Y, Liao Y, Liu QL, Ni ZH, Zhang ZZ, et al. BRD4-targeting PROTAC as a unique tool to study biomolecular condensates. Cell Discovery, 2023, 9(1), 47. DOI: 10.1038/s41421-023-00544-0
[103]Kwon W-A, Joung JY. Precision targeting in metastatic prostate cancer: molecular insights to therapeutic frontiers. Preprints, 2025. DOI: 10.20944/preprints202503.0213.v1
[104]Rutherford KA, McManus KJ. PROTACs: current and future potential as a precision medicine strategy to combat cancer. Molecular Cancer Therapeutics, 2024, 23(4), 454-463. DOI: 10.1158/1535-7163.MCT-23-0747
[105]Peng XP, Pan WY, Jiang F, Chen WM, Qi ZT, et al. Selective PARP1 inhibitors, PARP1-based dual-target inhibitors, PROTAC PARP1 degraders, and prodrugs of PARP1 inhibitors for cancer therapy. Pharmacological Research, 2022, 186, 106529. DOI: 10.1016/j.phrs.2022.106529
[106]Wang C, Zhang YJ, Zhang TT, Xu JZ, Yan SS, et al. Epidermal growth factor receptor dual-target inhibitors as a novel therapy for cancer: A review. International Journal of Biological Macromolecules, 2023, 127440. DOI: 10.1016/j.ijbiomac.2023.127440
[107]Wang ZY, Shi ZC, Yang SQ, Niu ZZ, Shu KF, et al. Design and synthesis of c-Met and HDAC dual inhibitors for the treatment of breast cancer. ACS Medicinal Chemistry Letters, 2024, 15(9), 1516-1525. DOI: 10.1021/acsmedchemlett.4c00256
[108]Skouteris N, Papageorgiou G. PARP inhibitors in colorectal malignancies: A 2023 update. Reviews on Recent Clinical Trials, 2024, 19(2), 101-108. DOI: 10.2174/0115748871260815231116060817
[109]Wu MF, Jiang YM, Zhang DM, Wu YQ, Jin YY, et al. Discovery of a potent PARP1 PROTAC as a chemosensitizer for the treatment of colorectal cancer. European Journal of Medicinal Chemistry, 2025, 282, 117062. DOI: 10.1016/j.ejmech.2024.117062
[110]Cheng BB, Fei XT, Ding ZB, Peng XP, Su ZH, et al. Recent progress in DNA damage response-targeting PROTAC degraders. Journal of Medicinal Chemistry, 2024, 67(9), 6906-6921. DOI: 10.1021/acs.jmedchem.4c00015
[111]Mustafa S, Siddiquee MSH. PROTACs: Mechanism and bioavailability enhancement strategies by nanotechnology, RNA viral infections (vaccine strategy) and prodrug development. German Journal of Pharmaceuticals and Biomaterials, 2024, 3(4), 1-22. DOI: 10.5530/gjpb.2024.4.11
[112]Chou CL, Lin CT, Kao CT, Lin CC. A novel rational PROTACs design and validation via AI-driven drug design approach. ACS Omega, 2024, 9(37), 38371-38384. DOI: 10.1021/acsomega.3c10183
[113]Li BQ, Ran T, Chen HM. 3D based generative PROTAC linker design with reinforcement learning. Briefings in Bioinformatics, 2023, 24(5), bbad323. DOI: 10.1093/bib/bbad323
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Advances in Clinical Pharmacology and Therapeutics

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.