Phytochemical-Mediated Selenium Nanoparticles from Moringa Oleifera: Antioxidant and Antidiabetic Perspectives
DOI:
https://doi.org/10.64229/y1e50y19Keywords:
Moringa oleifera, Moringa-SeNPs, Antioxidant activity, Antidiabetic potential, Green nanotechnologyAbstract
Background: This review examines the integration of nanotechnology and ethnopharmacology through the green synthesis of Moringa oleifera-mediated selenium nanoparticles (Moringa-SeNPs), highlighting their potential in mitigating oxidative stress-related metabolic disorders. Methods: A systematic search of Scopus, PubMed, Web of Science, ScienceDirect, and Google Scholar identified peer-reviewed English-language studies (2010-2025) focused on Moringa-SeNP synthesis, characterization, and biomedical activity. Studies lacking primary data or unrelated to green synthesis were excluded. Due to methodological heterogeneity, a qualitative narrative synthesis was used. Results: Evidence indicates that Moringa phytochemicals flavonoids, polyphenols, and saponins serve as natural reducing and stabilizing agents, yielding biocompatible, stable nanoparticles. Moringa-SeNPs demonstrate strong antioxidant effects by scavenging reactive oxygen species, enhancing endogenous antioxidant enzymes, and modulating redox-responsive signaling pathways. Antidiabetic mechanisms include a-amylase and a-glucosidase inhibition, improved insulin sensitivity via glucose transporter-4 (GLUT4) translocation, and protection of pancreatic b-cells from oxidative injury. Collectively, these actions support their promise as adjunct therapeutics for diabetes and metabolic syndrome. Conclusions: Moringa-SeNPs represent an eco-friendly nanoplatform with dual antioxidant and antidiabetic potential. However, progress is limited by inconsistent synthesis protocols, variable characterization practices, insufficient toxicity assessment, and minimal translational validation. Future efforts should prioritize standardized synthesis frameworks, robust safety evaluation, and well-designed preclinical and clinical investigations to facilitate biomedical advancement and support sustainable therapeutic innovation. Such advancements will strengthen reproducibility, enhance regulatory readiness, and clarify dose-response relationships essential for clinical translation. Ultimately, integrating phytochemistry with nanotechnology may yield safer, effective, and accessible interventions for global metabolic health challenges. This review therefore provides a foundation for future multidisciplinary research directions.
References
[1]Nkemzi AQ, Okaiyeto K, Oyenihi OR, Opuwari CS, Ekpo OE, Oguntibeju OO. Antidiabetic, anti-inflammatory, antioxidant, and cytotoxicity potentials of green-synthesized zinc oxide nanoparticles using the aqueous extract of Helichrysum cymosum. 3 Biotech. 2024, 14(12), 291. DOI: 10.1007/s13205-024-04125-0
[2]Dilworth L, Stennett D, Facey A, Omoruyi FO, Mohansingh S, Omoruyi FO. Diabetes and the associated complications: The role of antioxidants in diabetes therapy and care. Biomedicine & Pharmacotherapy, 2024, 181, 117641. DOI: 10.1016/j.biopha.2024.117641
[3]Bennici G, Almahasheer H, Alghrably M, Valensin D, Kola A, Kokotidou C, et al. Mitigating diabetes associated with reactive oxygen species (ROS) and protein aggregation through pharmacological interventions. RSC Advances, 2024, 14(25), 17448. DOI: 10.1039/d4ra02349h
[4]Caturano A, D’Angelo M, Mormone A, Russo V, Mollica MP, Salvatore T, et al. Oxidative stress in type 2 diabetes: impacts from pathogenesis to lifestyle modifications. Current Issues in Molecular Biology, 2023, 45(8), 6651-6666. DOI: 10.3390/cimb45080420
[5]Shoaib M, Sayed N, Shah B, Hussain T, AlZubi AA, AlZubi SA, et al. Exploring transfer learning in chest radiographic images within the interplay between COVID-19 and diabetes. Frontiers in Public Health, 2023, 11, 1297909. DOI: 10.3389/fpubh.2023.1297909
[6]Zhao X, An X, Yang C, Sun W, Ji H, Lian F. The crucial role and mechanism of insulin resistance in metabolic disease. Frontiers in Endocrinology. 2023, 14, 1149239. DOI: 10.3389/fendo.2023.1149239
[7]Javaid A, Hameed S, Li L, Zhang Z, Zhang B, Rahman M. Can nanotechnology and genomics innovations trigger agricultural revolution and sustainable development? Functional and Integrative Genomics, 2024, 24(6), 216. DOI: 10.1007/s10142-024-01485-x
[8]Ailioaie LM, Ailioaie C, Litscher G. Photobiomodulation in Alzheimer’s Disease A Complementary Method to State-of-the-Art Pharmaceutical Formulations and Nanomedicine? Pharmaceutics, 2023, 15(3), 916. DOI: 10.3390/pharmaceutics15030916
[9]Miguel-Rojas C, Pérez-de-Luque A. Nanobiosensors and nanoformulations in agriculture: new advances and challenges for sustainable agriculture. Emerging Topics in Life Sciences, 2023, 7(2), 229. DOI: 10.1042/etls20230070
[10]Ahamad Tarmizi AA, Nik Ramli NN, Adam SH, Abdul Mutalib M, Mokhtar MH, Tang SG. Phytofabrication of selenium nanoparticles with Moringa oleifera (MO-SeNPs) and exploring its antioxidant and antidiabetic potential. Molecules, 2023, 28(14), 5322. DOI: 10.3390/molecules28145322
[11]Villegas-Vázquez EY, Gómez-Cansino R, Marcelino-Pérez G, Jiménez-López D, Quintas-Granados LI. Unveiling the miracle tree: Therapeutic potential of moringa oleifera in chronic disease management and beyond. Biomedicines, 2025, 13(3), 634. DOI: 10.3390/biomedicines13030634
[12]Pyrzyńska K, Sentkowska A. Selenium species in diabetes mellitus type 2. Biological Trace Element Research, 2023, 202(7), 2993. DOI: 10.1007/s12011-023-03900-z
[13]Abd-Elnabi AD, Badawy MEI. Combating spodoptera frugiperda (lepidoptera: Noctuidae) with moringa-synthesized silica nanoparticles and its combination with some insecticides. Neotropical Entomology, 2024, 53(6), 1343. DOI: 10.1007/s13744-024-01210-0
[14]Garza-García JJO, Hernández-Díaz JA, León-Morales JM, Velázquez-Juárez G, Zamudio-Ojeda A, Arratia-Quijada J, et al. Selenium nanoparticles based on Amphipterygium glaucum extract with antibacterial, antioxidant, and plant biostimulant properties. Journal of Nanobiotechnology, 2023, 21(1), 252. DOI: 10.1186/s12951-023-02027-6
[15]Asghar N, Hussain A, Nguyễn ĐA, Ali S, Hussain I, Junejo A, et al. Advancement in nanomaterials for environmental pollutants remediation: a systematic review on bibliometrics analysis, material types, synthesis pathways, and related mechanisms. Journal of Nanobiotechnology. 2024, 22, 26. DOI: 10.1186/s12951-023-02151-3.
[16]elkhateeb O, Atta M, Mahmoud E. Biosynthesis of iron oxide nanoparticles using plant extracts and evaluation of their antibacterial activity. AMB Express. 2024, 14(1), 92. DOI: 10.1186/s13568-024-01746-9.
[17]Setty J, Samant SB, Yadav M, Manjubala M, Pandurangam V. Beneficial effects of bio-fabricated Moringa-SeNPs as seed nanopriming agent on seed germination in rice (Oryza sativa L.). Scientific Reports, 2023, 13, 22349. DOI: 10.1038/s41598-023-49621-0
[18]Puri A, Mohite P, Patil S, Chidrawar VR, Ushir YV, Dodiya R, et al. Facile green synthesis and characterization of Terminalia arjuna bark phenolic- selenium nanogel: a biocompatible and green nano-biomaterial for multifaceted biological applications. Frontiers in Chemistry, 2023, 11, 1273360. 10.3389/fchem.2023.1273360.
[19]Zuhrotun A, Oktaviani DJ, Hasanah AN. Biosynthesis of gold and silver nanoparticles using phytochemical compounds. Molecules, 2023, 28(7), 3240. DOI: 10.3390/molecules28073240.
[20]Akhter MS, Rahman MA, Ripon RK, Mubarak M, Akter M, Mahbub S, et al. A systematic review on green synthesis of silver nanoparticles using plants extract and their bio-medical applications. Heliyon, 2024, 10(11), e29766. DOI: 10.1016/j.heliyon.2024.e29766.
[21]Srisaisap M, Boonserm P. Anticancer efficacy of biosynthesized silver nanoparticles loaded with recombinant truncated parasporin-2 protein. Scientific Reports, 2024, 14(1), 15544. DOI: 10.1038/s41598-024-66650-5.
[22]Ilavenil KK, Senthilkumar V, Kasthuri A. Green synthesis of metal nanoparticles from three medicinal plants: a review of environmental and health applications. Discover Catalysis. 2025, 2, 3. DOI: 10.1007/s44344-025-00007-6.
[23]Alghonaim MI, Alsalamah SA, Ali Y, Abdelghany TM. Green mediator for selenium nanoparticles synthesis with antimicrobial activity and plant biostimulant properties under heavy metal stress. BioResources. 2023, 19(1), 898-916. DOI: 10.15376/biores.19.1.898-916
[24]Tuyen NNK, Huy VK, Duy NH, An H, Nam NTH, Dat NM, et al. Green synthesis of selenium nanorods using Muntigia calabura leaf extract: Effect of ph on characterization and bioactivities. Waste and Biomass Valorization, 2023, 15(4), 1987. DOI: 10.1007/s12649-023-02269-3
[25]Reshi ZA, Husain FM, Khanam MN, Javed SB. Effect of meta-Topolin on morphological, physiochemical, and molecular dynamics during in vitro regeneration of Salix tetrasperma Roxb. BMC Plant Biology, 2025, 25(1), 121. DOI: 10.1186/s12870-025-06095-8
[26]Liu P, Liu X, Wu Z, Shen K, Li Z, Li X, et al. Size effect-based improved antioxidant activity of selenium nanoparticles regulating Anti-PI3K-mTOR and Ras-MEK pathways for treating spinal cord injury to avoid hormone shock-induced immunosuppression. Journal of Nanobiotechnology, 2025, 23, 1. DOI: 10.21203/rs.3.rs-5326730/v1
[27]Tabibi M, Aghaei S, Amoozegar MA, Nazari R, Zolfaghari MR. Characterization of green synthesized selenium nanoparticles (SeNPs) in two different indigenous halophilic bacteria. BMC Chemistry, 2023, 17(1), 115. DOI: 10.1186/s13065-023-01034-w
[28]Mawthoh ABT, Seram D, Watt HJ. Green synthesized plant-based nanotechnology: Cutting edge innovation fostering sustainability and revolutionizing agriculture. E3S Web of Conferences, 2023, 453, 1018. DOI: 10.1051/e3sconf/202345301018
[29]Abouelhamd N, Gharib FAEL, Amin AA, Ahmed EZ. Impact of foliar spray with Se, nano-Se and sodium sulfate on growth, yield and metabolic activities of red kidney bean. Scientific Reports, 2023, 13(1), 17102. DOI: 10.1038/s41598-023-43677-8
[30]Golli AE, Contreras S, Dridi C. Bio-synthesized ZnO nanoparticles and sunlight-driven photocatalysis for environmentally-friendly and sustainable route of synthetic petroleum refinery wastewater treatment. Scientific Reports, 2023, 13(1), 20809. DOI: 10.1038/s41598-023-47554-2
[31]Almurshedi AS, El-Masry TA, Selim HM, El-Sheekh MM, Makhlof MEM, Aldosari BN, et al. New investigation of anti-inflammatory activity of Polycladia crinita and biosynthesized selenium nanoparticles: isolation and characterization. Microbial Cell Factories, 2023, 22(1), 173. DOI: 10.1186/s12934-023-02168-1.
[32]Steinbrenner H, Duntas LH, Rayman MP. The role of selenium in type-2 diabetes mellitus and its metabolic comorbidities. Redox Biology, 2022, 50, 102236. DOI: 10.1016/j.redox.2022.102236
[33]El-Borady OM, Othman MS, Atallah HH, Moneim AEA. Hypoglycemic potential of selenium nanoparticles capped with polyvinyl-pyrrolidone in streptozotocin-induced experimental diabetes in rats, Heliyon, 2020, 6(5), e04045. DOI: 10.1016/j.heliyon.2020.e04045
[34]Perumalsamy H, Balusamy SR, Sukweenadhi J, Nag S, MubarakAli D, Farh MEA, et al. A comprehensive review on Moringa oleifera nanoparticles: importance of polyphenols in nanoparticle synthesis, nanoparticle efficacy and their applications. Journal of Nanobiotechnology, 2024, 22(1), 71. DOI: 10.1186/s12951-024-02332-8
[35]Shehadeh MB, Suaifan GARY, Abu-Odeh A. Plants secondary metabolites as blood glucose-lowering molecules. Molecules. 2021, 26(14), 4333. DOI: 10.3390/molecules26144333
[36]Ali A, Mashwani Z, Raja NI, Mohammad S, Luna-Arias JP, Ahmad A, et al. Phytomediated selenium nanoparticles and light regimes elicited in vitro callus cultures for biomass accumulation and secondary metabolite production in Caralluma tuberculata. Frontiers in Plant Science, 2023, 14. 1253193. DOI: 10.3389/fpls.2023.1253193
[37]Wang M, Sun X, Wang Y, Deng X, Miao J, Zhao D, et al. Construction of selenium nanoparticle-loaded mesoporous silica nanoparticles with potential antioxidant and antitumor activities as a selenium supplement. ACS Omega, 2022, 7(49), 44851-44860. DOI: 10.1021/acsomega.2c04975
[38]Bisht N, Phalswal P, Khanna PK. Selenium nanoparticles: a review on synthesis and biomedical applications. Materials Advances, 2021, 3(3), 1415. DOI: 10.1039/d1ma00639h.
[39]Stoleru OA, Burlec AF, Mircea C, Felea MG, Macovei I, Hăncianu M, et al. Multiple nanotechnological approaches using natural compounds for diabetes management. Journal of Diabetes & Metabolic Disorders, 2024, 23(1), 267. DOI: 10.1007/s40200-023-01376-1.
[40]Elekofehinti OO. Momordica charantia nanoparticles potentiate insulin release and modulate antioxidant gene expression in pancreas of diabetic rats. Egyptian Journal of Medical Human Genetics, 2022, 23, 63. DOI: 10.1186/s43042-022-00282-0.
[41]Lillich FF, Imig JD, Proschak E. Multi-target approaches in metabolic syndrome. Frontiers in Pharmacology, 2021, 11, 554961. DOI: 10.3389/fphar.2020.554961
[42]Mohamed SM, Shalaby M, El-Shiekh RA, El-Banna HA, Emam SR, Bakr AF. Metabolic syndrome: risk factors, diagnosis, pathogenesis, and management with natural approaches. Food Chemistry Advances, 2023, 3, 100335. DOI: 10.1016/j.focha.2023.100335.
[43]Tornaghi M, Redha AA, Rondanelli M, Perna S. Exploring the impact of mulberry fruits on metabolic syndrome: A systematic review of current evidence. PharmaNutrition. 2023, 26, 100363. DOI: 10.1016/j.phanu.2023.100363.
[44]Stavitz J, Porcelli R, Gentile J. The role of plant-based nutrition and exercise in metabolic syndrome: A narrative review. Nutrients, 2025, 17(9), 1498. DOI: 10.3390/nu17091498.
[45]Ashraf K, Najmi AK, Ahemad N. Plant derived bioactive compounds in the management and treatment of metabolic syndrome. Frontiers in Pharmacology, 2024, 15, 1423125. DOI: 10.3389/fphar.2024.1423125
[46]Allegra M. Redox regulation of metabolic syndrome: From biochemical mechanisms to nutritional interventions. Antioxidants. 2021, 10(5), 638. DOI: 10.3390/antiox10050638
[47]Mantovani A, Garlanda C. Humoral innate immunity and acute-phase proteins. New England Journal of Medicine, 2023, 388(5), 439. DOI: 10.1056/nejmra2206346
[48]Manzoor MF, Arif Z, Kabir A, Mehmood I, Munir D, Razzaq A, et al. Oxidative stress and metabolic diseases: Relevance and therapeutic strategies. Frontiers in Nutrition, 2022, 9, 994309. DOI: 10.3389/fnut.2022.994309
[49]Townsend JR, Kirby TO, Sapp PA, Gonzalez AM, Marshall TM, Esposito R. Nutrient synergy: definition, evidence, and future directions. Frontiers in Nutrition, 2023, 10, 1279925. DOI: 10.3389/fnut.2023.1279925
[50]Islam MS, Wei P, Suzauddula M, Nime I, Feroz F, Acharjee M, et al. The interplay of factors in metabolic syndrome: understanding its roots and complexity. Molecular Medicine, 2024, 30(1), 279. DOI: 10.1186/s10020-024-01019-y
[51]Patial R, Batta I, Thakur M, Sobti RC, Agrawal DK. Etiology, pathophysiology, and treatment strategies in the prevention and management of metabolic syndrome. Archives of Internal Medicine Research, 2024, 7(4), 273-283. DOI: 10.26502/aimr.0184
[52]Das D, Shruthi NR, Banerjee A, Jothimani G, Duttaroy AK, Pathak S. Endothelial dysfunction, platelet hyperactivity, hypertension, and the metabolic syndrome: molecular insights and combating strategies. Frontiers in Nutrition, 2023, 10, 1221438. DOI: 10.3389/fnut.2023.1221438
[53]Masenga SK, Kabwe LS, Chakulya M, Kirabo A. Mechanisms of oxidative stress in metabolic syndrome. International Journal of Molecular Sciences, 2023, 24(9), 7898. DOI: 10.3390/ijms24097898
[54]Ambroselli D, Masciulli F, Romano E, Catanzaro G, Besharat ZM, Massari MC, et al. New advances in metabolic syndrome, from prevention to treatment: The role of diet and food. Nutrients, 2023, 15(3), 640. DOI: 10.3390/nu15030640.
[55]Qiao L, Chen Y, Song X, Dou X, Xu C. Selenium nanoparticles-enriched Lactobacillus casei ATCC 393 prevents cognitive dysfunction in mice through modulating microbiota-gut-brain axis. International Journal of Nanomedicine, 2022, 4807. DOI: 10.2147/ijn.s374024.
[56]Abdolmasoudi WH, Kariminik A, Ferdousi A. Effect of selenium nanoparticles on the expression of OqxB gene in clinical isolates of Klebsiella pneumoniae. Avicenna Journal of Clinical Microbiology and Infection, 2023, 10(3), 100-105. DOI: 10.34172/ajcmi.3450
[57]Zambonino MC, Quizhpe EM, Mouheb L, Rahman A, Agathos SN, Dahoumane SA. Biogenic selenium nanoparticles in biomedical sciences: Properties, current trends, novel opportunities and emerging challenges in theranostic nanomedicine. Nanomaterials, 2023, 13(3), 424. DOI: 10.3390/nano13030424.
[58]Ferro C, Florindo HF, Santos HA. Selenium nanoparticles for biomedical applications: From development and characterization to therapeutics. Advanced Healthcare Materials, 2021, 10, 16. DOI: 10.1002/adhm.202100598.
[59]Samynathan R, Venkidasamy B, Ramya K, Muthuramalingam P, Shin H, Kumari PS, et al. A recent update on the impact of nano-selenium on plant growth, metabolism, and stress tolerance. Plants. 2023, 12(4), 853. DOI: 10.3390/plants12040853.
[60]Khanizadeh P, Mumivand H, Morshedloo MR. Application of selenium nanoparticles is more effective in improving the growth, yield, antioxidant enzymes, and essential oil production of Dracocephalum kotschyi Boiss compared to sodium selenite. Research Square. 2024. DOI: 10.21203/rs.3.rs-5055386/v1
[61]A B, Du Q, Liu D, Shi X, Tu J, Xia X. A review on synthesis and antibacterial potential of bio-selenium nanoparticles in the food industry. Frontiers in Microbiology, 2023, 14, 1229838. DOI: 10.3389/fmicb.2023.1229838
[62]Morkunas I, Chung V, Sadowska K, Labudda M, Jeandet P, Morkunas I. Application of silver and selenium nanoparticles to enhance plant-defense response against biotic stressors. Acta Physiologiae Plantarum, 2025, 47(2), 21. DOI: 10.1007/s11738-025-03768-7
[63]Garg S, Rumjit NP, Roy S. Smart agriculture and nanotechnology: Technology, challenges, and new perspective. Advanced Agrochem, 2023, 3(2), 115. DOI: 10.1016/j.aac.2023.11.001
[64]Negi GS, Sircar A, Pandian S. Applications of silica and titanium dioxide nanoparticles in enhanced oil recovery: Promises and challenges. Pet Rescue, 2021, 6(3), 224-246. DOI: 10.1016/j.ptlrs.2021.03.001
[65]Senthamarai MD, Hillary VE, Rajan MR, Ceasar SA. Biosynthesis of selenium nanoparticles and its biological applications: A systematic review. Nano-Structures & Nano-Objects, 2024, 39, 101261. DOI: 10.1016/j.nanoso.2024.101261
[66]Deepasree K, Venugopal S. Therapeutic potential of selenium nanoparticles, Frontiers in Nanotechnology, 2022, 4, 1042338. DOI: 10.3389/fnano.2022.1042338
[67]Zhao J, Zou H, Huo Y, Wei X, Li Y. Emerging roles of selenium on metabolism and type 2 diabetes. Frontiers in Nutrition. 2022, 9, 1027629. DOI: 10.3389/fnut.2022.1027629
[68]Khan I, Hameed H, Younas K, Zaman M, Faheem S, Majeed I, Alvi MN. Unlocking the power of antioxidant nanoparticles: Insights into classification, formulation, characterization, and biomedical applications. BioNanoScience, 2025 Mar, 15(1), 131. DOI: 10.1007/s12668-024-01761-x
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Rufai Ibrahim Danyaro (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.